High speed manoeuvring of Long Combination Vehicles
High speed manoeuvring of Long Combination Vehicles

Outline

- Introduction – Future Advanced Driver Assistance Systems (ADASs)
- Long Combination Vehicles (LCV)
- Lateral performance characteristics of LCV
- Vehicle models for manoeuvring
- Numerical example
- Summary / Conclusions
Introduction

- Future ADASs - extended autonomous driving functionality

- The predicted ADASs for LCV - different from solo vehicles

 Consideration must be taken to the length of the vehicle combinations as well as a more comprehensive longitudinal and lateral vehicle dynamics.
Introduction

- Example of semi-autonomous vehicle system architecture [1]

[1] S Anderson, K Iagnemma
Long Combination Vehicles (LCV)

- Today the permitted length is regulated by directive 96/53 EC
 - Rigid truck with trailer - 18.75m
 - Tractor with one semi-trailer - 16.5m
 - Use of European Modular System - 25.25m

- Envisioned road transport systems for heavy vehicles 2030-
 - Vehicle combination length 25-35m
High Speed Steady-state Offtracking (HSSO)

“The lateral offset between the paths of the center of the front axle and the center of the most severely offtracking axle of any unit in a steady turn at a certain friction level and a certain constant longitudinal speed.” [2]

High Speed Transient Offtracking (HSTO)

“High speed transient offtracking is defined as an overshoot in the lateral distance between the paths of the center of the front axle and the center of the most severely offtracking axle of any unit in a lane change maneuver at a certain friction level and a certain constant longitudinal speed.” [2]

Lateral performance characteristics of LCV

Rearward Amplification (RWA)

“It is the relationship between the maximum movements of the first and the last vehicle units during some kind of manoeuvre. It is usually measured in terms of yaw velocity or lateral acceleration gain.” [3]

Vehicle models for high speed manoeuvring

Vehicle model concepts

- Transient non-linear two-track model
 - Non-linear geometry, non-linear tyre model, variable v_x

- Transient linear one-track model (linear bicycle model)
 - Linear geometry, linear tyre model, constant v_x

- Ideally tracking one-track model (kinematic bicycle model)
 - Non-linear geometry, no tyre slip model, constant v_x
Numerical example

High Speed Steady-state Offtracking (HSSO)
Summary / Conclusions

- Future driver assistance systems for LCV - different from solo vehicles
- Use of Performance Characteristics for LCV
- Vehicle models important for autonomous driving functionalities for LCV
- Different vehicle models needed for different driving scenarios, velocities etc.